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Results are presented from a linear-stability analysis of the flow at the head of two-
dimensional gravity-current fronts. The analysis was undertaken in order to clarify the
instability mechanism that leads to the formation of the complex lobe-and-cleft pattern
which is commonly observed at the leading edge of gravity currents propagating along
solid boundaries. The stability analysis concentrates on the foremost part of the front,
and is based on direct numerical simulation data of two-dimensional lock-exchange
flows which are described in the companion paper, Härtel et al. (2000). High-order
compact finite differences are employed to discretize the stability equations which
results in an algebraic eigenvalue problem for the amplification rate, that is solved in
an iterative fashion. The analysis reveals the existence of a vigorous linear instability
that acts in a localized way at the leading edge of the front and originates in an
unstable stratification in the flow region between the nose and stagnation point. It
is shown that the amplification rate of this instability as well as its spanwise length
scale depend strongly on Reynolds number. For validation, three-dimensional direct
numerical simulations of the early stages of the frontal instability are performed, and
close agreement with the results from the linear-stability analysis is demonstrated.

1. Introduction
Gravity currents spreading along solid boundaries typically feature an intense

three-dimensional motion at the leading edge that is accompanied by a substantial
entrainment of light fluid into the gravity-current head (cf. Britter & Simpson 1978;
Hallworth et al. 1996). Many experiments have shown that the flow in this region is
composed of a complex pattern of so-called lobes and clefts which are highly unsteady
and continuously shift along the leading edge (Simpson 1997). This intriguing feature
of gravity-current fronts could also be observed in the three-dimensional direct
numerical simulation (DNS) of a lock-exchange flow which we discussed and analysed
in Part 1 of the present study (Härtel, Meiburg & Necker 2000). A snapshot of the
flow at the head obtained from this simulation is given in figure 1, where the flow
field is visualized by an isosurface of density. Around the leading edge, the isosurface
is highly distorted, and its shape reveals the existence of distinct lobes which closely
resemble those observed in laboratory experiments (see, for example, figure 1 of
Simpson 1969).

† Permanent address: Department of Thermo- and Fluid Dynamics, Chalmers University of
Technology, Göteborg, Sweden.
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Figure 1. Structure of the foremost part of a gravity current in a three-dimensional DNS simulation
of lock-exchange flow. The Reynolds number, based on height and propagation speed of the front,
is about 750. The front structure is visualized by a density isosurface (ρ = 0.5). Side-plane:
instantaneous streamlines in a frame of reference moving with the front. Back plane: density
distribution.

The omni-presence of the lobe-and-cleft structure strongly suggests that it originates
in some fundamental and vigorous instability, but the driving mechanism behind it has
not been fully clarified. Most of what is known to date about this phenomenon still
traces back to the work of Simpson (1972) who studied aspects of the lobe formation
over a wide range of Reynolds numbers. His experiments revealed the importance
of buoyancy forces for the occurrence of the lobes and clefts, and highlighted the
influence of the conditions at the wall along which the front spreads. From Simpson’s
observations it was conjectured that a gravitational rise of the thin layer of light fluid
that the gravity current overruns is responsible for the breakdown of the flow front at
the leading edge. Simpson employed different techniques to avoid near-wall light fluid
becoming trapped underneath the front, and found that the lobe formation at the
leading edge indeed disappeared. However, no sufficiently detailed measurements were
available to disclose details of structure and location of the frontal instability, and
consequently the actual involvement of the potentially unstable light fluid underneath
the head remained unresolved.

To examine the hydrodynamic instability behind the lobe-and-cleft structure, we
have undertaken a stability analysis of the flow at the head of a gravity current. In
this analysis we do not address the dynamics of fully developed lobes directly, but
rather approach the problem by looking at two-dimensional fronts, trying to clarify
whether or not they are unstable to small three-dimensional disturbances. Our aim is
to identify the primary and three-dimensional linear instability that drives an initially
two-dimensional flow front into a three-dimensional state. The appearance of this
primary instability, as observed in experiments, is sketched in figure 2. It is seen
that the transition to a three-dimensional flow is accompanied by the formation of
a regular structure of filaments which persist for some distance downstream before
collapsing into the more irregular pattern of shifting lobes and clefts. As pointed
out by Simpson (1972), these filaments indicate the existence of an initially preferred
lobe size which presumably corresponds to the wavelength of some most unstable
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Figure 2. Initiation of the lobe-and-cleft structure at the head of a gravity current as observed
in the experiments of Simpson (1972). Plan view at intervals of 1

3
s. The flow is from right to left

at a Reynolds number of about 4500 (Gr ≈ 4 × 107). Initially, the floor underneath the front was
moved with the front giving an almost two-dimensional flow structure at the leading edge. At the
position of the dashed vertical line the floor was suddenly brought to rest. The rapid transition
to a filamentary structure, which precedes the final breakdown into the lobes and clefts, is clearly
recognized.

mode. The sketch makes clear that the filaments start to form at the leading edge
of the front. This is in accordance with a finding discussed in Part 1, namely that
the breakdown of a two-dimensional flow front becomes visible first at the foremost
part and appears in the form of sinusoidal disturbances. These observations suggest
that the two-dimensional/three-dimensional transition at the head is caused by an
instability that acts locally at the leading edge, rather than by a buoyancy-induced
rise of light fluid that the front has overrun.

As basis for the linear-stability analysis we employ the DNS results of two-
dimensional lock-exchange flows which we presented in Part 1. From the DNS, the
flow at the head of the front is known with high accuracy which allows its response
to small three-dimensional disturbances to be examined carefully. In the stability
analysis we will focus on the flow at the foremost part of the head which we consider
in a translating system moving with the front. Of special interest to us are the spatial
structure and the amplification rates of the most unstable modes. In order to assess the
influence of viscous forces on the frontal instability, we will study flows over a range
of Reynolds numbers which extends up to about 14 000. At present, no sufficiently
detailed experimental observations are available that could serve for comparison with
our linear-stability results. Therefore, we have also conducted three-dimensional direct
simulations of the early stages of the frontal breakdown in the course of our study
for validation purposes.

2. Basic equations
In the present work we address flows driven by small density differences, which

are described by the Boussinesq approximation of the incompressible Navier–Stokes
equations (cf. Gebhart et al. 1979). The dimensionless governing equations derived in
Part 1 have the form

∂uk

∂xk
= 0, (1)
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Figure 3. Temporal development of the non-dimensional front speed uf after release. Results for
Grashof numbers of 3× 104 (dashed line) and 106.
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∂(ρuk)

∂xk
=
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GrSc2

∂2ρ

∂xk∂xk
, (3)

where the half-height h̃ of the lock-exchange channel and the buoyancy velocity ũb
were employed for non-dimensionalization. As in Part 1, the governing dimensionless
parameters are the Grashof number Gr, which is the ratio of buoyancy forces to
viscous forces, and the Schmidt number Sc. In the present stability analysis, the
Schmidt number will generally be unity, whereas the Grashof number is varied
between 3× 104 and 4× 108. Given the common definition of the Reynolds number
of a gravity current by means of the actual height and speed of the head of the
front (see Part 1), the Grashof-number regime examined corresponds to a range of
Reynolds numbers from below 100 to about 14 000.

3. Two-dimensional base flow
Before we concentrate on the stability results in § 4, we will briefly summarize the

main characteristics of the two-dimensional lock-exchange flows, which we subject
to the linear-stability analysis. A detailed description of the respective DNS results
was given in Part 1, where the numerical methods employed for the DNS were also
discussed. The lock-exchange set-up is well suited to study the dynamics of the flow at
a gravity-current head since after a short initial transient the fronts travel at essentially
constant speed. This allows the head to be considered in a translating system moving
with the front, in which the flow at the foremost part is stationary. This feature of
the lock-exchange flow is illustrated in figure 3 where the non-dimensional speed of
the front is plotted as a function of time for a Grashof number of 106. No more
than some 5 dimensionless time units h̃/ũb are needed to establish a constant speed
of propagation in this case. However, for a phase of constant speed to develop, the
Reynolds (or Grashof) number of the flow must be sufficiently high, since viscous
friction retards the front substantially at lower Re. Figure 3 also gives the front speed
for a flow at Gr = 3 × 104, where it is seen that uf continuously decreases after
the initial transient. Consequently, the Reynolds number also drops with time and
remains well below 100 after t = 5, say. In this case no translating frame of reference
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Gr Re (xl1, x
l
3) (xu1, x

u
3)

3× 104 < 100 (−0.64,−1.0) (1.9, 0.72)
9× 104 ∼ 170 (−0.6,−1.0) (1.6, 0.22)

106 ∼ 650 (−0.38,−1.0) (1.54, 0.35)
107 ∼ 2100 (−0.18,−1.0) (0.95,−0.43)

4× 108 ∼ 14000 (−0.023,−1.0) (0.24,−0.84)

Table 1. Grashof and Reynolds numbers of the two-dimensional base flows examined in the stability
analysis. (xl1, x

l
3) and (xu1, x

u
3) are the coordinates of the respectively lower-left and upper-right corner

of the rectangular subdomain used in the analysis (see figure 4).
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Figure 4. Structure of the foremost part of a gravity current at Gr = 9 × 104 visualized by the
stagnation streamline in the translating system (arrows indicate the flow direction). The subdomain
of size L∗1 × L∗3 used in the linear-stability analysis is shown by the dashed rectangle. The lower
boundary of the subdomain coincides with the bottom wall, and its lower-left and upper-right
corners (coordinates (xl1, x

l
3) and (xu1, x

u
3), respectively) are enclosed by circles.

exists in which the flow at the head is stationary; however, we have still performed
a stability analysis for this flow using the DNS results at t = 10. The instantaneous
front speed at this time was then employed as the translational velocity of the moving
frame of reference.

In the present stability analysis, we examine flows at five different Grashof numbers
which are summarized in table 1 together with the respective Reynolds numbers. The
second smallest Grashof number 9 × 104 is large enough to allow a constant-speed
phase to develop; however, this flow differs from the flows at higher Gr in that
the Grashof number is still below the threshold where the primary two-dimensional
instability of the flow sets in which leads to the formation of Kelvin–Helmholtz-like
billows at the interface (Härtel & Meiburg 1999). For the stability analysis, flow fields
were taken typically some 9 to 12 dimensionless time units after the initial release. At
this time the flow at the foremost part of the front is fully developed.

The topology of the head of a lock-exchange gravity current is illustrated in figure
4 where the flow field for Gr = 9× 104 is visualized by the stagnation streamline in a
frame of reference moving with the head. The translating coordinate system in figure
4 is chosen such that the x3-axis is at the nose of the head, i.e. at the foremost point.
The horizontal axis x1 is in the centre of the channel, meaning that the walls are
located at x3 = ±1. Among the distinct features of the flow at the head which are
visible from figure 4, is the thin layer of light fluid which is pulled beneath the head
as a consequence of the no-slip condition at the lower boundary. The nose of the
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front is seen to be raised some distance above the wall, and the streamline pattern
shows that the stagnation point in the translating system is located below and slightly
behind the nose in the vicinity of the wall. This feature of the flow topology is of
special interest with regard to the frontal instability, since it gives rise to a region of
unstably stratified fluid between stagnation point and nose which does not involve
the light fluid overrun by the front. As we pointed out in Part 1, this structure is
also observed at the head of three-dimensional fronts even though the presence of the
lobes and clefts strongly affects the flow pattern locally. Still, the mean flow topology
of a three-dimensional front, obtained for example by averaging the flow in spanwise
direction, is very similar to what is seen for the purely two-dimensional front in
figure 4.

Finally, we note that the extent of the region around the head where stationary
conditions are encountered depends on the Reynolds number. The fact that at too
low Reynolds numbers no truly steady-state flow at the head develops has already
been discussed. On the other hand, due to the developing two-dimensional Kelvin–
Helmholtz-like instability at the interface, the stationary flow region at the head
shrinks continuously with increasing Reynolds number, since the location where
this instability first appears moves progressively towards the nose. However, the
immediate neighbourhood of the nose and stagnation point does remain stationary
in the translating system for two-dimensional fronts up to Reynolds numbers of at
least 30 000, as shown in Part 1.

4. Linear stability analysis
The stability analysis concentrates on the flow at the leading edge of the front where

both experiments and DNS indicate the primary instability sets in. As is common in
linear stability theory (see Drazin & Reid 1981), we employ a decomposition of the
flow variables into a mean-flow component and a (infinitesimally) small disturbance.
In the present case the mean-flow component is the two-dimensional, steady-state
flow at the foremost part of the gravity current, while the disturbance is assumed
to be three-dimensional. If the mean-flow part is indicated by an overbar and the
disturbance by a prime, this decomposition is

ui(xi, t) = ūi(x1, x3) + u′i(x1, x2, x3, t), (4)

p(xi, t) = p̄(x1, x3) + p′(x1, x2, x3, t), (5)

ρ(xi, t) = ρ̄(x1, x3) + ρ′(x1, x2, x3, t). (6)

For the disturbance we employ an ansatz which is largely guided by the appearance
of the frontal breakdown as depicted in figure 2, which suggests that the relevant
primary instability is an absolute instability in the moving frame of reference (see
Huerre & Monkewitz 1990). Moreover, we infer from the formation of the regularly-
spaced filaments that this instability is wave-like in the spanwise direction, with some
wavenumber β, and that it is stationary in the sense that it does not travel along
the leading edge. Finally, since we are dealing with a linear analysis, we assume that
the dominant mode grows (or decays) exponentially with time at a rate σ. These
assumptions correspond to the following general form of the disturbances:

f′ = f̂(x1, x3) cos (βx2)e
σt for f′ = u′1, u

′
3, p
′, ρ′, (7)

f′ = f̂(x1, x3) sin (βx2)e
σt for f′ = u′2, (8)
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where f̂ is the amplitude function (or shape function) that does not depend on time.
Note that for continuity u′2 must be expressed as a sine, if cosines are employed for the
other two velocity components. To obtain the evolution equations for the disturbance
part, (4)–(8) must be inserted into the basic equations (1)–(3), and the mean-flow
equations, which are assumed to be fulfilled, have to be subtracted. If, furthermore,
all terms which are quadratic in the disturbances are neglected, the following system
of linear partial differential equations is obtained:

∂û1

∂x1

+ βû2 +
∂û3

∂x3

= 0, (9)

σû1 + û1

∂ū1

∂x1

+ û3

∂ū1

∂x3

+ ū1

∂û1

∂x1

+ ū3

∂û1

∂x3

+
∂p̂

∂x1

=
1√
Gr

(
∂2û1

∂x2
1

− β2û1 +
∂2û1

∂x2
3

)
, (10)

σû2 + ū1

∂û2

∂x1

+ ū3

∂û2

∂x3

− βp̂ =
1√
Gr

(
∂2û2

∂x2
1

− β2û2 +
∂2û2

∂x2
3

)
, (11)

σû3 + û1

∂ū3

∂x1

+ û3

∂ū3

∂x3

+ ū1

∂û3

∂x1

+ ū3

∂û3

∂x3

+
∂p̂

∂x3

=
1√
Gr

(
∂2û3

∂x2
1

− β2û3 +
∂2û3

∂x2
3

)
− ρ̂, (12)

σρ̂+ û1

∂ρ̄

∂x1

+ û3

∂ρ̄

∂x3

+ ū1

∂ρ̂

∂x1

+ ū3

∂ρ̂

∂x3

=
1√

Gr Sc2

(
∂2ρ̂

∂x2
1

− β2ρ̂+
∂2ρ̂

∂x2
3

)
. (13)

The system (9)–(13) constitutes an eigenvalue problem where ûi, ρ̂, and p̂ are the
eigenfunctions and σ is the eigenvalue that depends on β and Gr. In general, σ may
also be a function of the Schmidt number, which is very large (typically O(103)) in
experiments where salt water and fresh water are used as working fluids. On the other
hand, in intrusion flows of gas mixtures, where the same frontal instabilities occur,
Schmidt numbers are usually of order one. From a precursor study we found that the
dependence of σ on Sc is indeed weak unless Sc becomes very small, and therefore
we have restricted the analysis to Schmidt numbers of unity here.

4.1. Computational approach

To solve the eigenvalue problem we employ a collocation technique, where the stability
equations are discretized in a rectangular subdomain of size L∗1×L∗3 that encompasses
the foremost part of the front. The size of the subdomain and its location were chosen
such that the flow region where the relevant eigenfunctions are most pronounced is
captured well. For illustration, the subdomain used in the analysis of the flow at
Gr = 9 × 104 is depicted in figure 4 as a dashed rectangle. The length and height
of the subdomain are L∗1 = 2.2 and L∗3 = 1.22, respectively, in this case. The spatial
discretization within the subdomain is performed on an equidistant mesh with nodal
points that are at the same locations as the corresponding nodes of the computational
grid used in the DNS of the base flow. A highly-accurate compact finite difference
scheme of at least sixth-order according to Lele (1992) is applied to discretize the
spatial derivative operators. This transforms the set of stability equations into a
general algebraic eigenvalue relation of the form

Aφ = σBφ, (14)

where A and B are N × N non-sparse matrices that contain the coefficients of the
differentiation schemes and the coupling terms between the five discretized budget
equations (see Carlsson & Thunblom 1998). φ is the vector that is composed of the
nodal-point values of the amplitude functions ûi, p̂, and ρ̂. The number of nodal
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Figure 5. Stability diagram of the flow at a gravity-current head. Shown is the amplification rate σ
of the first mode of instability as a function of wavenumber β and Grashof number Gr.

points, and hence the size of the system (14), depends on the extent of the subdomain
and the computational resolution employed. In the present study, between several
hundred and 2700 nodal points were used within the subdomain, giving a maximum
size of N = 13 500 for the matrices A and B .

Since we are primarily interested in the dominant modes of instability, the complete
spectrum of the generalized eigenvalue problem does not need to be evaluated.
Therefore, we have employed an iterative procedure based on the implicitly restarted
Arnoldi method (Sorensen 1992) to solve (14) for the leading eigenvalues. In the
computational implementation of the eigenvalue solver we have made use of the
subroutine system arpack (see Maschhoff & Sorensen 1996). After each iteration
step, the accuracy of the eigenvalues and eigenvectors was tested by computing the
residual r ≡ ||Aφ − σBφ||, and the iteration was terminated when the convergence
criterion r < 10−10 was met.

From figure 4 it is seen that the subdomain has open boundaries at the top
and at both sides, and at these locations no natural boundary conditions for the
amplitude functions are available. However, from our analysis we found that the
eigenvalues and the associated eigenfunctions are not very sensitive to the boundary
conditions chosen, provided the subdomain is sufficiently large to accommodate the
regions where the amplitude functions are most pronounced. All results presented
here were obtained with homogeneous Neumann conditions for the disturbances at
the open boundaries, meaning that the gradients of the disturbance quantities normal
to the respective boundaries are required to vanish. At the rigid bottom wall, on the
other hand, homogeneous Dirichlet conditions for the velocities and homogeneous
Neumann conditions for the density are the natural choice.

4.2. Discussion of the stability results

The key finding of our present analysis is that the head of a gravity current is
linearly unstable to three-dimensional disturbances throughout the range of Grashof
numbers examined. The stability diagram of the flow is shown in figure 5 where the
growth rate σ of the instability is displayed as a function of β and Gr. Only results
for the first mode of instability are shown in figure 5, although at times more than
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Figure 6. Wavenumber βmax and amplification rate σmax of the most unstable mode as function of
Grashof number. The experimental data point is extracted from Simpson (1972) (see figure 2).

one unstable mode was obtained from the analysis. However, in all cases the higher
modes of instability were insignificant, since their associated amplification rates were
much smaller than those of the first mode. Particularly noteworthy is the fact that
even for the two smallest Grashof numbers unstable three-dimensional modes can be
found. This shows that the first instability to be observed at a gravity-current head
is a three-dimensional one, since at such low Grashof numbers no two-dimensional
Kelvin–Helmholtz-like rollers form. It is seen from the stability diagram that the
amplification rates strongly increase with Grashof number. For Gr = 4 × 108, for
example, growth rates can become as large as 4, meaning that disturbance amplitudes
will grow by more than a factor of 50 within a single dimensionless time unit. This
suggests that the breakdown of an essentially two-dimensional flow front would occur
very abruptly at high Reynolds numbers, a fact that may render it difficult to monitor
and analyse the primary instability experimentally in this case, even under carefully
controlled conditions.

The stability diagram makes clear that the range of wavenumbers for which unstable
modes appear, broadens substantially with increasing Grashof number, although the
minimum wavenumber below which no unstable modes exist is similar for all Gr.
The curves in figure 5 feature distinct maxima which indicate that at each Grashof
number a most amplified disturbance exists, that we will generally refer to as the most
unstable mode in the remainder of this paper. The associated amplification rate and
the spanwise wavenumber of this mode will be denoted as σmax and βmax, respectively.
The variation of βmax and σmax with Grashof number, as extracted from the stability
diagram, is shown in figure 6. At Gr = 3×104 the maximum amplification rate occurs
for β ≈ 6, which corresponds to a wavelength λ = 2π/β approximately equal to the
height of the gravity-current head; however, the wavelength of the most unstable
mode decreases to only little more than 1

20
at Gr = 4× 108. To compare the present

findings with experiments, we have determined βmax from the spacing of the initial
filaments in Simpson’s sketch in figure 2. The result is included in figure 6 and it is
seen to agree well with the predictions from the linear-stability analysis. However, a
more detailed comparison with laboratory measurements over a range of Reynolds
numbers would certainly be desirable, but to our knowledge no further quantitative
results on the initial filamentary structure are available from published laboratory
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Figure 7. Isocontours of the amplitude functions of the most unstable mode for Gr = 9 × 104.
Solid and dashed lines represent positive and negative values, respectively. The thick solid line is
the stagnation streamline.

experiments at present. A more thorough validation can therefore only be achieved
by comparison with direct numerical simulations of the early stages of the frontal
breakdown. This will be done in the next section.

The spatial structure of the leading-edge instability is visualized in figure 7 where
the amplitude functions û1, û2, û3, and ρ̂ of the most unstable mode are depicted
for the flow at Gr = 9 × 104. It is seen that the instability is most pronounced at
the foremost part of the head. All disturbance components have their peaks in the
region around the leading edge and decay quickly with increasing distance from the
nose. The localization of the instability at the leading edge of the front is even more
pronounced at higher Grashof numbers. This is illustrated by figure 8 which gives
the amplitude functions of the respective most unstable modes at different Gr. For
simplicity, only û2 is shown in the figure, but very similar results are obtained for
the other disturbance components. The region primarily affected by the leading-edge
instability is located between stagnation point and nose, and shrinks substantially
with increasing Gr. We remark that, although the stagnation point approaches the
wall for increasing Grashof number (see table 1 of Part 1), the Reynolds number
of the near-wall flow, formed in terms of the height of the stagnation point, still
grows. Consequently, the stabilizing effect of viscous forces quickly diminishes with
increasing Grashof number, a fact that is reflected by the increase of σ with Gr seen
in figure 5.
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Figure 8. Structure of the respective most unstable modes at different Grashof numbers. Shown
are isocontours of the amplitude function û2. Solid and dashed lines indicate positive and negative
values, respectively. In each picture the thick solid line is the stagnation streamline.

Because the eigenfunctions become more and more localized, we could use much
smaller subdomains in the analysis of flows at higher Grashof numbers. Table 1
gives the coordinates (xl1, x

l
3) and (xu1, x

u
3) of the respectively lower-left and upper-right

corner of the subdomain used for the different Gr. It is seen that the area that the
analysis window covers differs by more than a factor of 100 between the lowest and
highest Grashof number examined; however, the total number of nodal points in the
analysis window, and hence the numerical expense of the stability analysis, still grows
with increasing Grashof number, since the spatial discretization must be drastically
refined with increasing Gr.

The fact that the eigenfunctions are most pronounced in the unstably stratified
region between stagnation point and nose suggests that the frontal instability is
caused by buoyancy forces. To examine more specifically the role that buoyancy
plays, we have repeated part of the analysis using simplified stability equations in
which the gravity term was dropped (see Carlsson & Thunblom 1998). In this case
no unstable modes could be found, which provides evidence that the mechanism
triggering the breakdown of the front into the lobe-and-cleft pattern is indeed a
gravitational instability. However, the instability shown in figures 7 and 8, which acts
in a localized way at the leading edge, is not related to the unstable stratification
between the heavy fluid within the head and the thin layer of light fluid that the
front overruns (note that the light fluid in the region between the nose and stagnation
point resides only temporarily underneath the front, but eventually flows above the
head). Since this thin layer of light fluid underneath the front has been thought to
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be held responsible for the frontal instability in the past, we have also examined the
stability properties of the near-wall flow beneath the head using an appropriately
modified observation window. The analysis showed that in this flow region further
gravitational instabilities may indeed exist, but their contribution to the frontal
breakdown is negligible, since they are much less amplified than the most unstable
mode at the leading edge (Carlsson & Thunblom 1998).

5. Direct numerical simulations
Sufficiently detailed experimental results on the frontal instability are not avail-

able at present, and therefore we performed direct numerical simulations of three-
dimensional lock-exchange flows for comparison with the results from our linear-
stability analysis. In addition to validating the stability computations for the leading
edge, the DNS also serve to clarify whether or not further three-dimensional insta-
bilities exist in the flow. Note that our linear-stability analysis not only has focused
on small subdomains at the head, but also that the ansatz (7), (8) for the dis-
turbances would miss travelling modes or spatially growing instabilities. For the
simulations the code of Härtel et al. (1997) was employed, which is based on a mixed
spectral/spectral-element discretization in space along with finite differences in time.
In the DNS, minute three-dimensional disturbances with amplitudes of the order of
10−12 were superimposed on the initial flow field, and their evolution with time was
monitored. The disturbance field was essentially random, but constructed in such a
manner that it features a broad and flat spectrum which includes the most unstable
mode from the stability analysis of the two-dimensional flow at the respective Grashof
number. The width L2 of the box was generally larger (typically 4–5 times larger)
than the wavelength of the most unstable mode in order to avoid the disturbance
spectrum being confined to this mode and its higher harmonics.

Three different Grashof numbers were considered for comparison with the stability
analysis, namely 3 × 104, 106, and 107. The rather low Grashof number of 3 × 104,
which is below the threshold where a phase of constant speed of propagation develops
(see figure 3), was chosen to probe the robustness of the linear-stability results. Recall
that at this Grashof number the requirement of stationary conditions at the foremost
part of the front is not fully satisfied. From the DNS results, the eigenfunctions
(modes) associated with a given spanwise wavenumber β are readily obtained by a
Fourier transformation of the velocity components and the pressure. For example,
the component û2 of the eigenfunction is given by

û2(x1, β, x3, t) =
2

π

∫ L2

0

u2(x1, x2, x3, t) sin (βx2) dx2. (15)

Since the spanwise velocity component u2 vanishes for strictly two-dimensional flows,
it can be employed to measure directly the three-dimensionality of the flow.

A first impression of the temporal evolution of small three-dimensional disturbances
in lock-exchange flow can be gained from figure 9 where the time history is given of
the maximum of u2 (normalized by its initial value) for all three Grashof numbers.
The curves in figure 9 show that from about t = 3–4 on, an exponential growth of
the disturbance amplitudes sets in which indicates that the flows are linearly unstable.
More detailed insight into the evolution of the instability is achieved by considering
the spanwise spectra of the velocity component u2. Figure 10 shows such spectra as
a function of spanwise wavenumber β for five successive times of the simulations
which are increments of two non-dimensional time units apart. The curves represent
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Figure 9. Temporal development of the amplitude of three-dimensional disturbances in direct
numerical simulations of lock-exchange flows. The curves give the maximum of u2 over the whole
flow domain, normalized by the maximum of the initial random disturbance at t = 0. The thin lines
indicate the theoretical growth of the most unstable modes according to linear-stability analysis (see
table 2).

the maximum ûm2 of each mode over the (x1, x3)-plane, i.e.

ûm2 (β, t) = max
x1 , x3

{û2(x1, β, x3, t)}. (16)

For the Grashof numbers 3×104 and 106 the agreement with the stability diagram in
figure 5 is striking. Except for modes with very small wavenumbers and for very early
times, the growth and decay of the individual disturbance components agrees closely
with the linear analysis. For each β, the logarithm of the disturbance amplitude in
essence grows linearly with time at a rate equal to the amplification rate σ of the first
mode of instability depicted in figure 6. We have evaluated the actual growth rates
by taking the ratio of amplitudes at times t = 8 and 10, and the results obtained
for the respective most unstable modes are compared with the predictions from
linear-stability theory in table 2. For both Grashof numbers the difference amounts
to a few per cent only. It is remarkable that even for the smallest Grashof number
the DNS result agrees well with the stability analysis, despite the fact that steady-
state conditions at the head of the front are not attained. The associated amplitude
functions û2 and ρ̂ of the fastest growing modes are displayed in figures 11 and 12
for the Grashof numbers 3× 104 and 106. For comparison, the corresponding results
from the linear-stability analysis for the same spanwise wavenumber are included in
the figures, and again an excellent agreement is seen. These results make clear that
in a spatially and temporally developing lock-exchange flow, the dominant mode of
instability is indeed the most unstable mode that a local linear stability analysis of
the flow at the foremost part of the front predicts.

The results for Gr = 107 shown in figure 10 differ slightly from what is seen for
the two lower Grashof numbers, in that the stability properties of the flow during
the initial transient lead to a stronger excitation of higher modes within the first 2–4
dimensionless time units. However, once the flow at the head is fully developed, the
amplification rates approach the values obtained from the linear-stability analysis,
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Figure 10. Spanwise spectra of the velocity component u2 (see equation (16)) obtained from DNS
at three different Grashof numbers (results are normalized by the respective values at t = 0).
Given are results for five successive times of the simulations two time units apart. The flow fields
were initialized with random disturbances with a maximum amplitude of the order of 10−12. The
wavelengths of the most-unstable modes according to linear-stability theory are indicated by the
dashed vertical lines.

and this causes the peak in the spectrum to move towards the wavenumber of the
most unstable mode according to figure 6. Note that the most-amplified mode at
a given time cannot be deduced from the maximum in the disturbance spectrum,
since the actual amplitude of a mode depends on the entire time history of the
flow. Like for the two lower Grashof numbers, we have computed the amplification
rate for Gr = 107 from the increase in amplitude between times t = 8 and 10, and
again achieved close agreement with the linear-stability analysis concerning both the
spanwise wavelength of the most unstable mode and its actual amplification rate. The
comparison of σmax with the linear-stability result is included in table 2 where it is
seen that the two agree to at least three digits.

As a final remark we point out that for Gr = 107 the strongly increasing amplitudes
seen at both the low- and high-wavenumber part of the spectrum at later times do not
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Gr σLSTmax σDNSmax ε

3× 104 0.28 0.26 ≈ 7%
106 1.12 1.14 ≈ 2%
107 2.04 2.04 < 0.5%

Table 2. Amplification rate σ of small three-dimensional disturbances with a lateral wavenumber
of βmax according to figure 6. Comparison of DNS results and linear-stability theory (LST) for
different Grashof numbers. ε is the relative difference in the results related to the value obtained
from the DNS.
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Figure 11. Isocontours of the amplitude functions û2 and ρ̂ of the most unstable mode for
Gr = 3× 104. Comparison of results from linear-stability theory (LST) and DNS.

indicate the onset of another type of instability. Since the growth rates of the most
unstable modes are very large at this Grashof number, the dominant disturbance
amplitudes rise by 7–8 orders of magnitude within the first 10 dimensionless time
units, meaning that the maxima of the respective eigenfunctions have already grown
to about 10−5 or even 10−4. Consequently, nonlinear interactions of these modes excite
disturbances at the lower and upper ends of the spectrum, the amplitudes of which
scale with approximately the square of the amplitude of the primary disturbances.
At later times these ‘passive’ modes become visible as pronounced wings in the
disturbance spectrum in figure 10.
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Figure 12. Isocontours of the amplitude functions û2 and ρ̂ of the most unstable mode for
Gr = 106. Comparison of results from linear stability theory (LST) and DNS.

6. Concluding remarks
In the present paper we have clarified the long-standing issue of the nature of the

hydrodynamic instability that initiates the breakdown of a flow front into the lobe-
and-cleft structure. Experiments have shown that the transition from an essentially
two-dimensional front into a highly irregular three-dimensional state passes through
distinct stages, the first of which being characterized by the development of a regular
filamentary structure at the leading edge. We have conducted a linear-stability analysis
of the flow at the foremost part of the front which reveals that the spacing of the
initial filaments is closely related to the preferred wavelength of a vigorous instability
that has not been recognized before. The stability analysis was based on DNS data
of two-dimensional mutual intrusion flows, but only a small subdomain enclosing the
foremost part of the front was considered. A wave ansatz for the disturbances was
used, and the resulting generalized eigenvalue problem for the temporal growth rate of
the most unstable modes was solved numerically. From the associated eigenfunctions
it became clear that the frontal instability is not caused by overrun light fluid, as
assumed in the past; rather it is due to the unstable stratification that prevails at the
leading edge between the nose and stagnation point of the front.

At present, no sufficiently detailed experimental data are available that could be
used for comparison with our linear-stability analysis. Therefore, we have also pre-
sented three-dimensional direct simulations of the early stages of the frontal break-
down in this paper, in order to validate the findings from the stability calculations.
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In the simulations the flow fields were initialized with minute random disturbances,
but after a short initial transient the disturbance spectrum was found to develop
in line with what the linear-stability analysis of the flow at the head predicts. An
excellent agreement was obtained not only with respect to the preferred wavelength
of the instability, but also concerning the spatial structure and the temporal growth
rate of the respective most unstable modes. Note that in the direct simulations the
full spatial and temporal development of the frontal system is taken into account;
however, no relevant three-dimensional instabilities were observed other than those
predicted by the local stability analysis of the region around the nose of the front.
It is clear, therefore, that the development of the three-dimensionality in the flow is
determined by the conditions at the head where the dominant instability is localized.

Most of the present work was conducted while F. C. and M. T. were guests at the
Institute for Fluid Dynamics of ETH Zürich. The authors wish to thank Professor L.
Löfdahl and Dr J. P. Kunsch for their support which made this joint project possible.
The authors also wish to thank M. Ballabio for optimizing the DNS code for the
NEC SX-4 system at CSCS, Manno. Helpful comments by Dr A. Bakchinov and F.
Necker on a previous version of this paper are gratefully acknowledged.
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